MECÂNICA GRACELI GENERALIZADA - QUÂNTICA TENSORIAL DIMENSIONAL RELATIVISTA DE CAMPOS.





  MECÃNICA GRACELI GERAL - QTDRC.





equação Graceli dimensional relativista  tensorial quântica de campos 

G* =  =

[  /  IFF ]   G* =   /  G  /     .  /

 G  = [DR] =            .+  

+  G* =  = [          ] ω   / T] / c [    [x,t] ]  =  


//////

[  /  IFF ]  = INTERAÇÕES DE FORÇAS FUNDAMENTAIS. =

TeoriaInteraçãomediadorMagnitude relativaComportamentoFaixa
CromodinâmicaForça nuclear forteGlúon10411/r71,4 × 10-15 m
EletrodinâmicaForça eletromagnéticaFóton10391/r2infinito
FlavordinâmicaForça nuclear fracaBósons W e Z10291/r5 até 1/r710-18 m
GeometrodinâmicaForça gravitacionalgráviton101/r2infinito

G* =  OPERADOR DE DIMENSÕES DE GRACELI.

DIMENSÕES DE GRACELI SÃO TODA FORMA DE TENSORES, ESTRUTURAS, ENERGIAS, ACOPLAMENTOS, , INTERAÇÕES E CAMPOS, DISTRIBUIÇÕES ELETRÔNICAS, ESTADOS FÍSICOS, ESTADOS QUÂNTICOS, ESTADOS FÍSICOS DE ENERGIAS DE GRACELI,  E OUTROS.

/

  / G* =  = [          ] ω           .

 MECÂNICA GRACELI GENERALIZADA - QUÂNTICA TENSORIAL DIMENSIONAL RELATIVISTA DE INTERAÇÕES DE CAMPOS. EM ;


MECÂNICA GRACELI REPRESENTADA POR TRANSFORMADA.



dd = dd [G] = DERIVADA DE DIMENSÕES DE GRACELI.




                                        - [   /.    ] [ 

G { f [dd]}  ´[d]    / .  f [d]   G*                            dd [G]





                                        - [   /.    ] [  ]

G { f [dd]}  ´[d]    / .  f [d]   G*                            dd [G]






                                        - [   /.    ] [  ]

G { f [dd]}  ´[d]    / .  f [d]   G*                            dd [G]






                                        - [   /.    ] [  ]

G { f [dd]}  ´[d]    / .  f [d]   G*                            dd [G]




Na mecânica estatística quântica, a entropia de von Neumann, nomeada em homenagem a John von Neumann, é a extensão dos conceitos clássicos de entropia de Gibbs ao campo da mecânica quântica.[1] O formalismo matemático abrangente da mecânica quântica foi apresentado pela primeira vez no livro "Mathematische Grundlagen der Quantenmechanik" publicado em 1932 de Johann von Neumann.[2] Para um sistema mecânico quântico descrito por uma matriz densidade ρ, a entropia de von Neumann és[3][4]

onde  denota o traço e ln denota o logaritmo (natural) da matriz. E se ρ é escrito em termos de seus autovetores  como

então a entropia de von Neumann é meramente[3]

Nesta forma, S pode ser visto como equivalente à entropia teórica de Shannon da informação.[3]








Comments